群馬県農業技術センター研究報告 第18号(2021):23~25 検索語:リン酸・減肥・ネギ

秋冬どりネギのリン酸減肥栽培

関口景子·齋藤穂高*·加藤哲史^{2*}

緒言

肥料原料価格の国際的な高騰以降、施肥コストの 削減や養分の過剰蓄積に対応するため、土壌診断に 基づいたリン酸施肥量の削減が求められている。 2015 年度の県内ネギ栽培ほ場における土壌モニタ リング調査では、普通畑13 ほ場のうち9 ほ場が可給 態リン酸 100 mg/100g 以上(データ未発表)で、本 県の土壌診断基準¹⁾(20~60 mg/100g)と比べ過剰 であった。そこで、本県秋冬どりネギの施肥基準¹⁾ によるリン酸施肥量(30 kg/10a)を減肥した場合の 収量等への影響を確認するとともに、減肥が可能と なる土壌の可給態リン酸の値について検討した。

試験方法

群馬県農業技術センター本所(伊勢崎市)内のほ 場において、2016年から2018年の3年間試験を実 施した。ほ場は、可給態リン酸約60~90 mg/100g、 リン酸吸収係数約1,300の未熟黒ボク土(包括的土 壌分類 第1次試案2011)で行った。試験区は、表 1のとおり、基肥のリン酸が30 kg/10aである「0 %減肥区」(以下、「対照区」)を対照として、15 kg/10aの「50%減肥区」、0 kg/10aの「100%減肥 区」を設定した。また、リン酸が15 kg/10aとなる ように堆肥施用量を決め、窒素は、堆肥施用量計算 ソフト²⁾を用いて堆肥施用量の約60%の利用効率と して計算し、その不足分を単肥で補填した「50%減 肥〔堆肥〕区」を設定した。1 試験区は 24 ㎡の 3 反復とした。栽植密度は、チェーンポット(CP303、 264 穴)に3粒まきで、畝間1mとし、58,667本/10a であった。ネギ品種「夏扇3号」を4月播種、6月 定植、12月収穫した。2016年の栽培で黒腐菌核病の 発生が見られたため、栽培ほ場をほ場Aから隣接す るほ場Bへ移動した。

1 試験区あたり4 ㎡収穫し、収量および等級等に ついて調査した。作物体のリン酸吸収量は、各試験 区から平均的な作物体10本を乾燥粉砕後、湿式分解 法(硝酸・過塩素酸)を用いて分解した後、バナド モリブデン酸法で測定した。土壌の可給態リン酸は、 土壌を風乾後、トルオーグ法³⁾で測定した。

結果および考察

各年度において、リン酸減肥区は「対照区」と比 ベ収量に差が認められず、全試験区で秋冬どりネギ の目標収量¹⁾である4,000 kg/10aを上回った(表2)。 試験区間の収量の差は、年次間の変動と比べると非 常に小さかった。2018年は台風による倒伏の影響に より、全試験区で収量が低下した。等級別数量の割 合は、各年度の試験区間で差が認められなかった(デ ータ省略)。

作物体のリン酸吸収量は、各年度の試験区間で差 が認められなかった(表3)。窒素や加里の吸収量 についても差が認められず(データ省略)、減肥に よる養分吸収量の減少は認められなかった。

表1 試験区の構成

試験区 -	基肥施肥量 (kg/10a)			 主な基肥資材(N-P-K) 		
	Ν	P 2 O 5	K 2 O	主な 苯 加 頁 杓 (N-r-K)		
0%減肥(対照)	14	30	14	有機アグレットねぎ・にら専用(10-12-8)		
50%減肥	14	15	14	有機アグレットねぎ・にら専用(10-12-8)		
50%減肥〔堆肥〕	14	15	14	団粒(豚ぷん堆肥)(4-5.5-2.3)		
100%減肥	14	0	14	ぐんま野菜応援団808(8-0-8)		
注)各試験区設定の施肥量となるように過石・塩加・硫安を用いて調整						

追肥は全試験区 NK 化成を用い窒素成分で9 kg/10a を3回に分けて施用

* 現 群馬県東部農業事務所

^{2*}元 群馬県農業技術センター 本報告の一部は 2019 年度土壌肥料学会関東支部大 会でポスター発表した

表2 出荷規格調製後の収量

	収量 (kg/10a)				
試験区	ほ場A	ほ 場 B			
	2016年	2017年	2018年		
0%減肥(対照)	8,420	7,808	6,232		
50%減肥	7,899	7,960	6,413		
50%減肥〔堆肥〕	7,693	7,980	6,294		
100%減肥	8,205	7,675	6, 598		
分散分析	n.s.	n.s.	n.s.		

注) n. s. は一元配置分散分析により有意差なしを示す(n=3) 葉は 3,4 枚を残して剥き全長 60 cm で切断した

土壌の可給態リン酸は、ほ場Aでの2016年栽培前後 の増減(増減1)において、試験区間で差が認めら れなかった(表4)。ほ場Bへ移動後の2017年栽培前 と2作栽培後の2018年栽培後の増減(増減2)を見る と、「対照区」は、「50%減肥〔堆肥〕区」や「100 %減肥区」と比べ、可給態リン酸が有意に増加して いた。「50%減肥〔堆肥〕区」と「100%減肥区」で は、明らかな増加傾向は見られなかった。

表3 作物体リン酸吸収量

	P₂O₅ (kg/10a)				
試験区	ほ場A	ほ場B			
	2016年	2017年	2018年		
0%減肥(対照)	6.1	4.6	3.3		
50%減肥	5.6	4.6	3.0		
50%減肥〔堆肥〕	5.4	4.6	3.0		
100%減肥	5.8	4.8	3.6		
分散分析	n. s.	n. s.	n. s.		

注) n. s. は一元配置分散分析により有意差なしを示す(n=3) リン酸吸収量は出荷規格調製前の収量から算出

「50%減肥〔堆肥〕区」を除いた3試験区の2017 年栽培前と2018年栽培後の可給態リン酸の増減につ いて、作土深と仮比重から、10aあたりのリン酸量 (kg)に換算して、2作のリン酸施肥量との関係を図 1に示した。図1の回帰式から、可給態リン酸が増 減しないと考えられる施肥量は、1作あたりに換算す ると4.4 kg/10aであり、概ね作物体リン酸吸収量と 同程度であった。

表4 栽培ほ場の可給態リン酸の変化

		土壌の可給態リン酸(mg/100g)					
試験区	201	2016年		2017年	2018年	(ほ場B)	
	栽培前	栽培後	増減1	栽培前	栽培後	増減2	
0%減肥(対照)	84	90	6	61	67	6 a	
50%減肥	85	85	0	60	63	3 ab	
50%減肥〔堆肥〕	85	85	0	61	62	0 b	
100%減肥	85	89	4	62	61	-1 b	
分散分析			n.s.			-	

注) 増減1:2016年栽培後から2016年栽培前を引いた値 増減2:2018年栽培後から2017年栽培前を引いた値 n.s.は一元配置分散分析により有意差なしを示す(n=3)

増減2について Tukey 法により同一英小文字を含む試験区間に5%水準で有意差なし

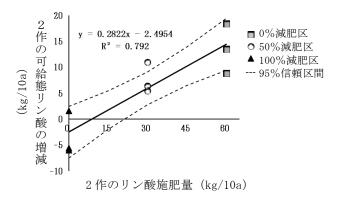


図1 リン酸施肥量と土壌の可給態リン酸の増減の関係 (2017~2018 年)

注) 可給態リン酸は作土重より換算して kg/10a とした 作土重 228.9 t/10a は作土深 0.25 m 仮比重 0.92 より算出 以上のことから、可給態リン酸が過剰なほ場にお いて、基肥のリン酸を無施肥や施肥基準量の50%減 肥、堆肥を使用した50%減肥としても、リン酸を施 肥基準量とした場合と比べ、ネギの収量や養分吸収 量の差は認められず、リン酸減肥栽培が可能と考え られた。また、2年間施肥基準量のリン酸を施肥した 場合、リン酸が蓄積していく傾向があった。

本試験では、可給態リン酸約 60 mg/100g のほ場で もリン酸減肥栽培が可能であったが、ネギはリン酸 を好む高リン酸作物⁴⁾で栽培期間が長く、低温時に は土壌からのリン酸供給力が低下する⁵⁾こと等を考 慮すると、気象条件によっては減収の危険性がある と考えられる。黒ボク土では、土壌の可給態リン酸 含有量が改善目標の上限値 100 mg/100g を超える場 合は、リン酸質肥料の施用を削減することが望まし い⁶⁾とされている。これらのことから、未熟黒ボク 土で秋冬どりネギを栽培する場合、土壌の可給態リ ン酸が概ね100 mg/100gを超えていれば、基肥のリ ン酸を減肥することが可能と考えられた。リン酸無 施肥での栽培は、専用肥料が限られることから、リ ン酸成分割合が低いV字型の肥料を用いて、概ねネ ギのリン酸吸収量程度のリン酸を施肥することで、 土壌の可給態リン酸の蓄積が抑えられると考えられ た。

また、堆肥については、リン酸の代替利用が可能 と考えられた。肥料取締法の改正⁷⁾によって、今後、 堆肥と化成肥料の配合の制約がなくなることから、 リン酸成分の少ない配合肥料の利用で、コストや散 布労力の面からも堆肥を利用したリン酸減肥が進め やすくなると考えられた。さらに、堆肥の利用は、 畜産が盛んである本県において、地域資源活用の有 効な手段と思われた。

本試験は未熟黒ボク土で確認したものであり、今 後は他の土壌種や作型についても減肥の適用を検討 していく必要がある。

引用文献

- 1) 群馬県農政部.2004.作物別施肥基準及び土壌 診断基準.15,82
- 2)浦野義雄ら.2005. 堆肥からの肥料成分を計算 するソフトの開発. 群馬県畜産試研場研究報告.
 11.75-80
- 3) 土壌標準分析・測定法委員会編. 2003. 土壌標準 分析・測定法. 博友社. 東京. 127-130
- 4)秋田県農林水産部.2015.秋田県減肥マニュアル (暫定版).2
- 5) 岡島秀夫・石渡輝夫. 1979. 土壌温度と作物生育 -とくにリン酸肥効との関連について-.日本土 壌肥料学雑誌. 50:334-338
- 6) 農林水産省.2008.地力増進基本指針. https://www.maff.go.jp/j/seisan/kankyo/hoze n_type/h_dozyo/pdf/chi4.pdf.6
- 7) 農林水産省. 2020. 肥料取締法改正の概要. https://www.maff.go.jp/j/syouan/nouan/kome/ k_hiryo/attach/pdf/seminar0116-9.pdf

(Key Words : Japanese Bunching Onion , Phosphate , Reduction of Fertilizer Application)

Autumn–Winter Japanese Bunching Onion Cultivation with Reduced Phosphate Fertilizer Application

Keiko SEKIGUCHI, Hotaka SAITOU and Tetsushi KATOU