高品質マイタケ栽培技術の確立

予算区分:県単

研究期間:平成 29~令和元年度

担当:きのこ係 松 本 哲 夫

培地添加物としてのジャガイモ残渣の利用

I はじめに

マイタケ菌床栽培は、群馬県の中山間地域における主要な産業の一つであるが、生産量は平成14年をピークに減少し、生産額、生産者数も減少し続けている。市場単価も600円/kg前後と低迷し、さらに大手企業の増産、産地間競争などにより生産者は厳しい立場にある。

マイタケは県の主要きのこの一つであり、高付加価値化や差別化、高品質化により、県産マイタケ 復活の活路を見いだすことが期待されている。

そこで、培地材料や栽培環境について検討を行い、色、香りがよく、形状の整ったマイタケを生産 する方法を確立する。

今年度は、ジャガイモ残渣を培地添加物として混合し、子実体の発生に与える影響について検討した。

Ⅱ 方 法

試験は2回実施した。重量2.5kgの培地を用いて試験を行った。培地基材はコナラおが粉を使用した。培地添加物は、ホミニーフィード及びジャガイモ残渣を単体もしくは混合して用い、乾重で1培地あたり250g添加した。1回目の試験では、一度冷凍した後に室温で解凍したジャガイモ残渣(以下解凍残渣)を、2回目の試験では、室温で解凍後、さらに電気式食品乾燥機(大紀産業株式会社 大紀式食品乾燥機 ミニミニ II)により温度50℃で72時間乾燥したジャガイモ残渣(以下乾燥残渣)を用いた。なお、培地添加物におけるホミニーフィードとジャガイモ残渣の混合割合は、表-1に示すとおりである。培地含水率は63%に調整した。滅菌は高圧滅菌とし、培地内温度が120℃に達してから40分間行った。滅菌終了後、温度20℃の放冷室で菌床を一晩冷却し、マイタケ種菌(森産業株式会社 森51号)を接種した。

培養は、温度22℃、湿度65%の条件で、菌糸成長の状況によって、暗培養を1回目の試験では43日

間、2回目の試験では40日間行い、その後、明培養を行った。明培養開始後、原基の形成及び成長を確認した後、菌床を発生室に移動した。発生室では、温度16℃、湿度85%の条件で子実体の生育を促した。袋カットは、発生室に移動してから2日後に、フィルター部を対角線で×印にカットした。子実体は、傘の裏の管孔が肉眼で確認できるようになってから収穫した。

試験区	1回目	2回目
対照	ホミニー	フィード100
25%	ホミニーフィード	75:ジャガイモ残渣25
50%	ホミニーフィード	50:ジャガイモ残渣50
75%	ホミニーフィード	25:ジャガイモ残渣75
100%	実施せず	ジャガイモ残渣100

表-1 各試験区の培地添加物混合割合

*1回目は解凍残渣を、2回目は乾燥残渣を使用

調査項目は、接種をしてから子実体が収穫されるまでの日数(以下日数)、1菌床当たりの子実体の収量(以下収量)、子実体株基部の横径(以下基横)と縦径(以下基縦)、子実体株傘部の横径

(以下傘横)と縦径(以下傘縦)とした。供試数は1試験区あたり12菌床とした。

Ⅲ 結果及び考察

1回目の試験について、結果を表-2に示す。50%区では1菌床で子実体が形成されなかった。日数については、75%区が最長になっており、対照区との間に有意差が認められた。収量については、50%区及び75%区では対照区と比較して有意に少なかった。基部と傘部の形状については、統計的な有意差は認められなかったが、75%区はやや小型の子実体を形成した。また、50%区においても1菌床で子実体を形成しなかったことから、ホミニーフィードを解凍残渣に置換する場合、乾重で25%まで可能であると考えられた。

-		日	数 (日)	収	量 (g)	基	横 (mm)	基	縦 (mm)	傘	横 (mm)	傘	縦 (mm)
	対照区		79.0 ^a		579. 8 ^a		69.2		49. 1		168. 7		127. 0
	25%区		81. 9 ^{ab}		537. 2 ^{ab}		68.0		49.4		172. 9		117. 5
	50%区		79. 5 ^{ab}		513. 8 b		71.3		50.6		165. 3		119. 3
_	75%区		84.3 b		501. 1 ^b		60.8		46.7		161. 7		<u>114. 1</u>

表-2 1回目の栽培試験結果

2回目の試験について、結果を表-3に示す。75%区は1菌床で、100%区は4菌床で子実体が形成されなかった。日数については、統計的な有意差は認められなかった。収量については、75%区は25%区、100%区との間に、100%区は他の全試験区との間に有意差が認められ、有意に少なくなっていた。形状では、傘横について対照区及び25%区と100%区との間に有意差が認められたが、基横、基縦、傘縦については有意差が認められなかった。また、75%区と100%区で部分的に傘の変形が見られた。75%区と100%区では子実体が形成されなかった菌床があったことからも、乾燥残渣の混合割合が増えることが、子実体形成の妨げになると考えられた。以上のことから、ホミニーフィードを乾燥残渣に置換する場合、乾重で50%まで可能であると考えられた。

	日	数	収	量	基	横	基	縦	傘	横	傘	縦
		(日)		(g)		(mm)		(mm)		(mm)		(mm)
対照区		72.2		559. 3 ^{ab}		71.2		44. 4		175. 1 ^a		124. 3
25%区		74. 1		572. 6 ^a		67.7		50.4		174. 3 ^a		132. 3
50%区		75.0		557.8 ab		68.9		48.7		174. 2 ^{ab}	1	131. 5
75%区		72. 1		511. 7 ^b		70.1		48.0		160. 4 ^{ab}		117. 1
100%区		76.5		438. 1 ^c		61.6		45.0		151. 4 ^b		112.6

表-3 2回目の栽培試験結果

^{*}表中の数字は各試験区の平均値を示す

^{**}異なるアルファベット間に有意差有り Steel-Dwass検定 収穫:p < 0.05 収量:p < 0.001

^{*}表中の数字は各試験区の平均値を示す

^{**}異なるアルファベット間に有意差有り Steel-Dwass検定 p<0.05