


工業(産業)団地+再工ネ基本構想

プロジェクト概要

群馬県企業局では、新規造成する産業団地に再工ネの付加価値を提供する目的で、 現状下記を検討している。

- 団地内に自営線マイクログリッドを敷設、団地内の電力の受配電はマイクログリッドを通じて行う。また団地内の一区画に特高変電所を設置し、系統連系点を集約する。
- 誘致企業の電力負荷にとらわれず、団地内の用地、建物、駐車場等のスペースを最大限活用して、太陽光発電を導入。余剰電力が生じた場合は、自営線マイクログリッドにて、団地内で融通するか、蓄電池、EMSを通して市場に売電する。
- 産業団地内の調整池を活用した太陽光発電を導入、電力を自営線マイクログリッドを通じて団地内企業に供給、余剰電力は蓄電池、EMSを通して市場売電する。
- 団地内の1区画に蓄電所を設置し、自営線マイクログリッド、太陽光発電とあわせ、系統 停電時のレジリエンス体制を構築
- 平常時、蓄電所は系統用および太陽光発電のFTM運用を行い、太陽光発電の充放電等による蓄電池のBTMでの活用は誘致企業と事業者にWIN-WINのメリットがあれば検討。
- 太陽光発電、蓄電池、企業の電力負荷(DRも含む)をもとに、EMSにて団地全体でのエネルギー最適化を実現。また市場参加することで事業性を確保する。

プロジェクトイメージ図

現状の課題認識

企業局では以下の課題を認識しており、調査業務を通じて、課題に対する対応策やリスク を検証し、最終的な意思決定をしていければと考えている。

	対応すべき課題
太陽光発電	近隣に大型の再工ネ発電所があるわけでなく、産業団地内の太陽光発電量は誘致企業の電力需要の一部しか賄えない可能性が高い。
自営線マイクログリッド	団地内太陽光発電量が限定的である場合、自営線マイクログリッドの投資、運用コストに見合うメリット や事業性はあるのか?
蓄電池	団地内太陽光発電量が限定的である場合、蓄電池の固定費を回収できるだけのメリットや事業性はあるのか?
事業性評価	誘致企業が決定していないなか、団地内誘致企業の負荷や余剰電力の規模が確定出来ないため、ベースとなる機器の規模が想定が難しいなど、不確定要因を排除できない。 また事業期間に産業団地進出企業の撤退等があった場合事業性が大きく変わるリスクをどう考えるか?
全体の取り組み	企業が個別に行う太陽光自家発(オンサイトPPA)と比較して、プラスアルファーの付加価値があるのか?

課題vsプロジェクト構成要素

前スライドでの現状の課題認識に対するプロジェクト概要に記載したプロジェクトの構成要素についての現状の評価は下記の通り。調査業務を通じて検証、評価し、削るところは削ることとし、最終的なプロジェクトスコープを決定していきたい。

	誘致企業内太陽光発電	調整池太陽光発電	自営線MG (特高変電所)	蓄電池	EMS
団地内再工ネ発電量	電力負荷(余剰電力発生)にとらわれず、スペースを最大限活用する	団地内再工ネ発電量増加に 貢献	余剰電力を有効活用するには、自営線MG(企業間融通)or 蓄電池+EMS(需給調整市場連携)が必要か?	同左	同左
事業性	建物の屋上だけでなく、 ソーラーカーポートまで範 囲を広げた場合のコスト競 争力の検証が必要	通常の地上設置型や屋根設 置型太陽光発電と比較した 事業性について検証要	スライド5参照	スライド6参照	マイクログリッド内エネルギー融通、市場参加等目的を整理したうえで、EMSの事業性の検証が必要か?
事業性評価	発電量は土地の広さをもと にある程度想定することは 可能か?他方、余剰電力は 誘致企業の電力負荷や需要 カーブ次第	発電コストの試算をもとに 事業性評価は可能では?	特高変電所の容量等は電力 負荷が大きい企業の誘致を 前提に余裕をもった仕様に していく必要あるか?	太陽光充放電量は余剰電力 次第になるため、確定が難 しい。蓄電池は系統用とし てメインで利用する前提で 検討できるか?	どこまでの機能をもたせるかにより、システム整備コスト、運用コストが変わってくるのか?
産業団地全体の取り組みとすることでの企業の個別対応と 比較した追加の付加価値	オンサイト太陽光発電量最大化	団地内の追加の地産地消再工ネ電力の調達	特高変電設備を利用してまとめて系統から調達することで得られるメリット+レジリエンス対応の付加価値	団地全体で取り組むことで の平常時、非常時の蓄電池 の有効活用が可能	最適化の範囲を団地に広げること、市場からの収益を狙っていくうえで、企業個別の取り組みより規模の経済を発揮できるのでは?4

自営線マイクログリッドの事業性

に評価する必要あるかと考える。

自営線マイクログリッドの事業性について、共同特高変電所のメリットも考慮のうえ、総合的

産業団地内運用

● 系統停電時のレジリエンス対応誘致企業が個別に行う太陽光自家発と比べた追加のメリットと考えるが、定量的な評価が難しいか?

● 余剰電力の企業間融通

余剰電力がどの程度発生するかは、誘致する企業の電力負荷や需要カーブに依拠するので、誘致企業が確定していない現状、評価が難しいか? 仮定にもとづいた複数のシナリオでの評価が必要か?

共同特高変電所を通した系統からの調達

● 託送料金削減

団地内企業の系統からの電力を特別高圧で調達することで、 系統連系点での電力の託送料金を特別高圧のレベルまで削 減することが可能。このベネフィットを誘致企業と事業者 で共有することが可能になるのではないか?

● 基本料金削減

団地内企業の系統からの電力をまとめて購入することで、 団地全体での最大使用可能な電力量で決定する基本料金を、 個別の企業で調達するのと比較して、削減することが可能 ではないのか?

蓄電所の事業性

蓄電所については、系統に空き容量があることより、FTM、BTMのハイブリッドでの活用を 幅広く検討することで、事業性を検証したい。

運用モード	目的	電力の流れ	対応市場・制度	課題
FTM	系統・市場取引	系統・太陽光→蓄電池 →市場(JEPX)	需給調整市場・容量市 場・FIP	系統用蓄電所の申請件数より需給調整市場の価格は今後下落すると予測。価格動向も考慮し、事業性を検証する必要あり
BTM	レジリエンス ピークカット タイムシフト	太陽光→蓄電池→施設内負荷	RE100, GHGプロト コール	誘致企業の負荷、需要カーブ、施設運用により、BTM運用の経済効果は変わるので、現時点で経済効果を特定することは難しいか? 平常時の蓄電池はFTMとしての利用を主軸に考える必要あるか?